| Please check the examination deta | ails below | before enter | ring your candidate information | |---|-------------|--------------|---------------------------------| | Candidate surname | | | Other names | | Pearson Edexcel International Advanced Level | Centre | Number | Candidate Number | | Sample Assessment Materials fo | or first te | aching Se | eptember 2018 | | (Time: 1 hour 30 minutes) | | Paper Re | eference WME01/01 | | Mathematics International Advance Mechanics M1 | ed Sub | sidiary | //Advanced Level | | You must have:
Mathematical Formulae and Sta | tistical T | ables, cal | Total Marks | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 7 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets use this as a quide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Turn over ## Answer ALL questions. Write your answers in the spaces provided. | | less otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \mathrm{ms^{-2}}$ and e your answer to either 2 significant figures or 3 significant figures. | |----|---| | 1. | A car is moving along a straight horizontal road with constant acceleration $a \text{ m s}^{-2}$ ($a > 0$). At time $t = 0$ the car passes the point P moving with speed $u \text{ m s}^{-1}$. In the next 4 s, the car travels 76 m and then in the following 6 s it travels a further 219 m. | | | Find | | | (i) the value of u , | | | (ii) the value of a . (7) | Question 1 continued | | Leave | |----------------------|-----------------------------------|-------| | C | Q1 | | | (Total for Question 1 is 7 marks) | | Leave blank | 2. | line
Imr
of t | o particles P and Q are moving in opposite directions along the same horizontal straight P . Particle P has mass P and particle P has mass P and particle P has mass P and the speed of P is P and the speed of each ticle is halved. | |----|---------------------|---| | | (a) | Find the value of k . | | | | (4) | | | (b) | Find, in terms of m and u only, the magnitude of the impulse exerted on Q by P in the collision. | | | | (2) | Question 2 continued | | Leave | |----------------------|-----------------------------------|-------| | Question 2 continued | 02 | | | | Q2 | | | (Total for Question 2 is 6 marks) | | Leave blank | 3. | A block A of mass 9 kg is released from rest from a point P which is a height h metres above horizontal soft ground. The block falls and strikes another block B of mass 1.5 kg which is on the ground vertically below P . The speed of A immediately before it strikes B is 7 m s ⁻¹ . The blocks are modelled as particles. | |----|---| | | (a) Find the value of h . (2) | | | Immediately after the impact the blocks move downwards together with the same speed and both come to rest after sinking a vertical distance of 12 cm into the ground. Assuming that the resistance offered by the ground has constant magnitude <i>R</i> newtons, | | | (b) find the value of R . (8) | uestion 3 continued | | |---------------------|--| Leave
blank | |------------------------------------|----------------| | Question 3 continued | Dialik | Q3 | | | | | (Total for Question 3 is 10 marks) | | 4. A diving board AB consists of a wooden plank of length 4m and mass 30kg. The plank is held at rest in a horizontal position by two supports at the points A and C, where AC = 0.6 m, as shown in Figure 1. The force on the plank at A acts vertically downwards and the force on the plank at C acts vertically upwards. A diver of mass 50 kg is standing on the board at the end *B*. The diver is modelled as a particle and the plank is modelled as a uniform rod. The plank is in equilibrium. - (a) Find - (i) the magnitude of the force acting on the plank at A, - (ii) the magnitude of the force acting on the plank at C. **(6)** The support at A will break if subjected to a force whose magnitude is greater than 5000 N. (b) Find, in kg, the greatest integer mass of a diver who can stand on the board at B without breaking the support at A. (3) (c) Explain how you have used the fact that the diver is modelled as a particle. (1) | uestion 4 continued | | |---------------------|--| | destion 4 continued | Leav | |----------------------|------------------------------------|------| | Question 4 continued | Q. | | | (Total for Question 4 is 10 marks) | | 5. Two forces, \mathbf{F}_1 and \mathbf{F}_2 , act on a particle A. $\mathbf{F}_1 = (2\mathbf{i} - 3\mathbf{j}) \text{ N and } \mathbf{F}_2 = (p\mathbf{i} + q\mathbf{j}) \text{ N, where } p \text{ and } q \text{ are constants.}$ Given that the resultant of \mathbf{F}_1 and \mathbf{F}_2 is parallel to $(\mathbf{i} + 2\mathbf{j})$, (a) show that 2p - q + 7 = 0 **(5)** Given that q = 11 and that the mass of A is 2 kg, and that \mathbf{F}_1 and \mathbf{F}_2 are the only forces acting on A, (b) find the magnitude of the acceleration of A. **(5)** | Omerting 5 and in mal | | Leave
blank | |-----------------------|--|----------------| | Question 5 continued | Q5 | | | (Total for Question 5 is 10 marks) | | | | (100011011 V MODELOIT C ID ID IIIII IID) | | 6. P Figure 2 Two cars, A and B, move on parallel straight horizontal tracks. Initially A and B are both at rest with A at the point P and B at the point Q, as shown in Figure 2. At time t=0 seconds, A starts to move with constant acceleration a m s⁻² for 3.5 s, reaching a speed of 14 m s⁻¹. Car A then moves with constant speed 14 m s⁻¹. (a) Find the value of a. **(2)** Car B also starts to move at time t = 0 seconds, in the same direction as car A. Car B moves with a constant acceleration of 3 m s⁻². At time t = T seconds, B overtakes A. At this instant A is moving with constant speed. (b) On a diagram, sketch, on the same axes, a speed-time graph for the motion of A for the interval $0 \le t \le T$ and a speed-time graph for the motion of B for the interval $0 \le t \le T$. (3) (c) Find the value of T. **(8)** (d) Find the distance of car B from the point Q when B overtakes A. **(1)** (e) On a new diagram, sketch, on the same axes, an acceleration-time graph for the motion of A for the interval $0 \le t \le T$ and an acceleration-time graph for the motion of B for the interval $0 \le t \le T$. (3) | | I
t | |---------------------|--------| | uestion 6 continued | , | Question 6 continued | Lea
blai | |----------------------|------------------------------------| Q | | | (Total for Question 6 is 17 marks) | Figure 3 A particle P of mass 4 kg is attached to one end of a light inextensible string. A particle Q of mass m kg is attached to the other end of the string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. The first plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$ and the second plane is inclined to the horizontal at an angle β , where $\tan \beta = \frac{4}{3}$. Particle *P* is on the first plane and particle *Q* is on the second plane with the string taut, as shown in Figure 3. The first plane is rough and the coefficient of friction between P and the plane is $\frac{1}{4}$. The second plane is smooth. The system is in limiting equilibrium. Given that P is on the point of slipping down the first plane, - (a) find the value of m, (10) - (b) find the magnitude of the force exerted on the pulley by the string, (4) - (c) find the direction of the force exerted on the pulley by the string. (1) | | Leave | |----------------------|-------| | | blank | | Question 7 continued | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA